Previous Contents Next

Chapter 4   Motion

m1r1=Fon 2+F1external
m2r2=Fon 1+F2external
But Fon 2=-Fon 1 by Newton III
m1r1+m2r2=F1external+F2external=Fexternal
Define
Rº
m1r1+m2r2
M
where M=m1+m2
MR=m1r1+m2r2=Fexternal
R defines the centre of mass of m1 and m2 and the centre of mass follows Newtons II law with respect to the external force; blind to the internal force. eg External Force = Uniform Gravity
MZ=m1g+m2g=Mg
Z=g

Internal Motion
Set Fexternal=0 so it is an isolated system
Þ MR=0 Þ MR=k
therefore this is true and momentum is conserved in an isolated system. Now
m1r1=Fon 2º Finternal
m2r2=Fon 1=-Fon 2
Þ r2-r1=
Fon 1
m2
-
Fon 2
m1
= æ
ç
ç
è
1
m1
+
1
m2
ö
÷
÷
ø
Finternal
µ r=Finternal
where:
r
is the related coordinate (r2-r1)
µ
is the recipical of m1+m2=m1m2/m1+m2 which is the reduced mass
r is the relative serperation
eg for a spring Finternal=-kx Þ µ x=-kx
SHM with angular frequency w 02=k/µ=k/m1m2(m1+m2) this can be used to calculate the ratio of the natural frequencies of H2 and HCl

4.1   One Dimensional Collisions

Choose a frame in which: We define a one dimensional collision as a collision that takes place along a line and they seperate along the line.
m1x1=-Finternal
m2x2=+Finternal
m1x1+m2x2=constant
m1u1+m2u2=m1v1+m2v2
If Finternal is a conservative force, then the total energy in the system is conserved
E=K+U
Hard collisions are examples of many collisions where U acts over a short range (eg billiard balls) so that (except for the short contact time)
Kinitial=Kfinal
in which case
1
2
m1u12+
1
2
u2u22=
1
2
m1v12+
1
2
m2v22
this is know as an Elastic Collision.

When given the initial velocities (u1, u2) calculate the final velocities (v1, v2) consider kinetic energy ® m1(v12-u12)=m2(u22-v22)
consider the momentum ® m1(v1-u1)=m2(u2-v2)
NOTE: (A12-B12)=(A1-B1)(A1+B1)
by dividing:
v1+u1=v2+u2
v1-v2=-(u1-u2)
We can now use this information to solve for v1 and v2
v1=
2m2u2+(m1-m2)u1
m1+m2
v2=
2m1u1+(m2-m1)u2
m1+m2

4.1.1   Special Case: Stationary Target

u2=0
v1=
m1-m2
m1+m2
v2=
2m1u1
m1+m2
If m1=m2 v1=0 and v2=u1 so therefore 100% energy transfer
m1>m2 v1>0 and v2>0
m1<m2 v1<0 and v2>0
m1« m2 v1=-u1 and v2=0 (brick wall rebound)

4.1.2   Special Case: Equal but Opposite Initial Velocities

At what velocity does the lighter mass recoil when u1=-u2 ?
v2=
2m1u+(m2-m2)(-u)
m1+m2
= æ
ç
ç
è
3m1-m2
m1+m2
ö
÷
÷
ø
u
v2= æ
ç
ç
è
3r -1
r +1
ö
÷
÷
ø
u
where r =m1/m2
m1» m2 v2=3u

4.1.3   Centre of Mass Frame

The centre of mass frame is a frame in which the coordinates of the partile are measured relative to the centre of mass.
Centre of mass coordinates: r1*=r1-R and r2*=r2-R
R=
m1r1-m2r2
m1+m2
where R is the position of the centre of mass
velocity of mass m1 in the centre of mass frame
r1*=r1-R
V1*=v1-V

Example

Two bodies collide ellastically with equal and opposite velocity u and -u . Show that the lighter mass cannot recoil with speed greater than 3u .
V~ u
Þ u1*=u1-V=u-u=0
Þ u2*=u2-V=-u-u=-2u
In the centre of mass frame we have a brickwall rebound.
ie v2*=+2u
Transform this back to the lab frame
v2=v2*+V=+2u+u=3u

4.1.4   Inelastic Collisions

Kinetic energy is now no longer conserved
Kf<Ki
Coefficient of Restitution
v2-v1=(u1-u2)e
where 0³ e£ 1 , if e=1 then collision is totally elastic, however if e=0 then the collision is totally inelastic (putty like).
Combine this with the conservation of momentum equation and solve for v1 and v2
v1=
m1u1+m2[u2+e(u2-u1)]
m1+m2
v2=
m2u2+m1[u1+e(u1-u2)]
m1+m2
for an equal approach collision
v2= æ
ç
ç
è
(2e+1)m1-m2
m1+m2
ö
÷
÷
ø
u= æ
ç
ç
è
(2e+1)r -1
r +1
ö
÷
÷
ø
u
as r ® big number, v2 ® (2e+1)u

4.2   Center of Mass Frame (in general)

r=r2-r1
R=
m1r1+m2r2
m1+m2
Solve for r1 and r2 in terms of R and r
MR=m1r1+m2r2
m2r=m2r2-m2r1
MR=m2r=(m1+m2)r1
r1=R-
m2
M
r
r2=R+
m1
M
r

4.2.1   Momentum in a Centre of Mass Frame

The position of the mass m1 in the centre of mass frame is r1*=r1-R
The momentum in the in the centre of mass frame for the mass m1
m1r1*=m1(r1+R1)
by using the general equations of centre of mass
m1r1*=p1*=-
m1m2
M
.r=-µ dotr
p2*=m2r2*r
Total momentum p1*+p2*=0 . In a centre of mass frame the total momentum of the system disappears.

4.2.2   Kinetic Energy in a Centre of Mass Frame

for mass 1:
K1*=
1
2
m1|r1*|2=
1
2
.
|p1*|2
m1
=
µ 2|r|2
2m1
for mass 2:
K2*=
1
2
m2|r2*|2=
1
2
.
|p2*|2
m2
=
µ 2|r|2
2m2
so the total kinetic energy in a centre of mass frame
K*=K1*+K2*=
1
2
(
1
m1
+
1
m2
)|r|2µ 2=
1
2
µ -1|r|2µ 2=
1
2
µ |r|2
relating the centre of mass kinetic energy to the lab frame kinetic energy
K=KCoM+K*=
1
2
M|R|2+
1
2
µ |r2
what is KCoM equal to, we don't know.

Working in one dimension:
r ® x1
r1 ® x1  etc ...
r ® x º x2-x1
x1=X-
m2
M
x
x2=X+
m1
M
x
same for velocities:
x1=X-
m2
M
x
x2=X-
m1
M
x
The lab kinetic energy:
K=
1
2
m1x12+
1
2
m2x22=
1
2
m1(X-
m2
M
x)2+
1
2
m2(X+
m1
M
x)2=
1
2
(m1+m2)X2-
m1m2
M
xX+
m1m2
M
Xx+
1
2
m1 æ
ç
ç
è
m2
M
ö
÷
÷
ø
2



 
x2+
1
2
m2 æ
ç
ç
è
m1
M
ö
÷
÷
ø
2



 
x2
K=
1
2
[
1
m1
× µ 2+
1
m2
× µ 2]x2=
1
2
[
1
m1
+
1
m2
2x2
however µ -1=1/m1+1/m2
K=
1
2
MX2+
1
2
µ x2

4.2.3   Example

Calculate the change in kinetic energy for an inelastic one dimensional collision

Method 1: Lab Frame

Kbefore=
1
2
m1u12+
1
2
m2u22
Kafter=
1
2
m1v12+
1
2
m2v22
D K=Kbefore-Kafter=
1
2
m1(u12-v12)+
1
2
m2(u22-v22)
conserve momentum:
m1u1+m2u2=m1v1+m2v2
resititution:
v2-v1=e(u1-u2)
now solve simultaneously for v1 and v2 and then substitute into D K ¾® NASTY!!!!

Method 2: Centre of Mass Frame

Kbefore=KCoM+Kbefore*
Kafter=KCoM+Kafter*
D K=Kbefore*-Kafter*
given K*=1/2µ |r|2
Kbefore*=
1
2
µ (u1-u2)2
Kafter*=
1
2
µ (v1-v2)2=
1
2
µ e2(u1-u2)2
D K=
1
2
µ (u1-u2)2(1-e2)=
1
2
æ
ç
ç
è
m1m2
m1+m2
ö
÷
÷
ø
(u1-u2)2(1-e2)
KCoM=
1
2
MX2
but mX=constant and so K(CoM)before=K(CoM)after

4.3   Rocket Motion

Two Body - Rocket and Fuel. In an isolated system momentum is conserved, therefore constant; from Newton II we get
0=
d
dt
(mv)=
dm
dt
+m
dv
dt
for a rocket in space F=0 however dv/dt¹ 0 so dm/dt¹ 0 in this case. Fuel is ejected from the rocket with velocity -Vex relative to the rocket. Therefore the lab observer sees the exhast to move with velocity v-vex (cf Young and Freedman page 250, this reference has the exhaust arrow in the wrong direction). Momentum conserved:
p(t)=mv
p(t+dt)=(m+dm)(v+dv)-dm(v-vex)=mv+mdv+vdm+(dmdv)-vdm+vexdm
we ignore (dmdv) as it is second order and so very small.
mv=mv+mdv+vexdm
mdv=-vexdm
If we divide by dt then this expression has the dimensions of force, the thrust of the system
m
dv
dt
=-vex
dm
dt
rearranging:
ó
õ
mf


mi
dm
m
=- ó
õ
vf


vi
dv
vex
however vex is a constant
ln æ
ç
ç
è
mf
mi
ö
÷
÷
ø
=-
1
vex
(vf-vi)
but ln X=-ln 1/X
ln æ
ç
ç
è
mi
mf
ö
÷
÷
ø
=
1
vex
(vf-vi)
mi=mfe
vf-vi
vex
 
mf=mie
-
vf-vi
vex
 
the initial fuel mass (mi-mf)

4.3.1   Rockets in the Presence of Gravity - Launch Vechicles

Assume gravity doesn't vary with height by Newton II
Fext=-mg
dp
dt
=
 
lim
dt 0
[
P(t+dt)-P(t)
dt
]=-mg
dp
dt
=
 
lim
dt 0
[
(m+dm)(v+dv)-dm(v-vex)-mv
dt
]=-mg
m
dv
dt
+vex
dm
dt
=-mg
dv
dt
=
-vex
m
.
dm
dt
-g
ó
õ
vf


vi
dv=-vex ó
õ
mf


mi
dm
m
-g ó
õ
t


0
dt
vf-vi=-vex.ln æ
ç
ç
è
mf
mi
ö
÷
÷
ø
-gt
vf-vi=vex.ln æ
ç
ç
è
mi
mf
ö
÷
÷
ø
-gt
For dv/dt>0 requires vex|dm/dt|>gm
Thrust>Weight

Previous Contents Next