Previous Contents Next

Chapter 6   Boltzmann's Entropy

what is the microscopic origin of S ? The properties of S are

6.1   Two Level Systems


Figure 6.2 - A Two Level System
A macrostate is specified by n1n2 . What are the values of n1 and n2 at equilibrium
S=klnN
W is the number of different ways of arranging N particles, in level one and n2 in level two, so that N=n1+n2
W= æ
ç
ç
è
N
N1
ö
÷
÷
ø
=NC
 
n1
=
N!
n1!(N-n1)!
=
N!
n1!n2!
    (6.1)
W=N(N-1)(N-2)
S=kln
æ
ç
ç
è
N!
n1!n2!
ö
÷
÷
ø
For large N and n1
lnN!~ NlnN-N     (6.2)
S=k[lnN!-lnn1!-ln[(N-n1)!]]!
S~ k[NlnN-N-n1lnn1+n1-(N-n1)ln(N-n1)+N-n2]
S=k[NlnN-n1lnn1-(N-n1)ln(N-n2)
compare with dU=TdS-MdB
  1. keep n1 and n2 fixed (so that dS=0 )
    dU=n1de1+n2de2=(-n1+n2dB=-MdB  (as required)
  2. keep B fixed (so that e1 and e2 are fixed also)
    dU=dn1e1+dn2e2=dn1(e1-e2)  (N=n1+n2Þ dn1=-dn2)
    compare this to TdS
    dS=
    dS
    dn1
    dn1
    dS=k[-1-lnn1+1+ln(N-n1)]dn1=kln
    æ
    ç
    ç
    è
    N-n1
    n1
    ö
    ÷
    ÷
    ø
    dn1
    to agree with dU=TdS we need
    e1-e2=kTln
    æ
    ç
    ç
    è
    N-n1
    n1
    ö
    ÷
    ÷
    ø
    this is an equation for n1(T,e )
    e1-e2
    kT
    =ln
    æ
    ç
    ç
    è
    N-n1
    n1
    ö
    ÷
    ÷
    ø
    =ln
    æ
    ç
    ç
    è
    n2
    n1
    ö
    ÷
    ÷
    ø
    solve for n1
    n1
    N
    =
    e
    -
    e1
    kt
     
    Z
    ,  
    n2
    N
    =
    e
    -
    e2
    kt
     
    Z
    Z=e
    -
    e1
    kT
     
    +e
    -
    e2
    kT
     
    this is as seen in section 4.6

6.1.1   Calculation

S=kN æ
ç
ç
è
lnN-
n1
N
lnn1-
n2
N
lnn2 ö
÷
÷
ø
S=-Nk é
ê
ê
ë
n1
N
ln
n1
N
+
n2
N
ln
n2
N
ù
ú
ú
û
S=-Nk
 
å
S
nS
N
ln
nS
N
now we insert that nS/N=e-eS/kt/Z (in log only)
S=-Nk
 
å
S
nS
N
æ
ç
ç
è
-
eS
kT
-lnZ ö
÷
÷
ø
N=
 
å
S
nS,  U=
 
å
S
nSeS
so now we get
S=-Nk æ
ç
ç
è
-U
NkT
-lnZ ö
÷
÷
ø
=
U
T
+NklnZ
TS=U+NkTlnZ
Þ F=U-TS=-NkTlnZ
this is known as the bridge equation. We now recall that
dF=-SdT-MdB
Þ F=F(T,B)
S=- æ
ç
ç
è
F
T
ö
÷
÷
ø
 



B
,  M=- æ
ç
ç
è
F
B
ö
÷
÷
ø
 



T
these are equations of state
Z=e
Y
B
kT
 
+e
B
kT
 
=Zcosh
æ
ç
ç
è
µ B
kT
ö
÷
÷
ø
F=-NkTlnZ
M=- æ
ç
ç
è
F
B
ö
÷
÷
ø
 



T
-NkT
1
Z
F
B
M=NkT
sinh
æ
ç
ç
è
µ
B
kT
ö
÷
÷
ø
cosh
æ
ç
ç
è
µ
B
kT
ö
÷
÷
ø
µ
kT
Þ M=Nµtanh
æ
ç
ç
è
µ
B
kT
ö
÷
÷
ø
~ c
B
T
this is true for large T (as we saw in section 4.6)

6.2   Microcanonical Ensemble for Gases


Figure 6.3 - ??
For fixed values of V and U=åSnSeS what are the values of nS at equilibrium? The energy levels for a box of gas molecules is
e =
2p2
2mL2
n2     (6.3)
n=(nx,ny,nz),  n2=nx2+ny2+nz2
where nx , ny and nz are discrete integer values ( 0 , 1 , 2 , 3 , etc).

Note that the energy levels are degenerate for example n=(2,0,0) has the same n2 as n=(0,0,2) .

let gS be the degeneracy of levels (number of states with energy eS ). Also gS is the number of vectors n with fixed n2 .

Figure 6.4 - ??
What is the equilibrium distribution of nS for fixed U , V and N ?
 
å
S
nS=N     (6.4)
 
å
S
nSeS=U     (6.5)
we use maximum entropy
S=klnW
where W is the number of ways of building a configuration with fixed nS . Maximise Entropy is subject to equations 6.5 and 6.6.

Figure 6.5 - W For Two Levels
W=
N!
n1!n2!
g
n1
 
1
g
n2
 
2
where g2n2 means that each particle g2 as so many ways of being in level two.

6.2.1   Computing W For Many Levels

W=N!
 
Õ
S
g
nS
 
s
nS!
    (6.6)
where
n
Õ
i=1
xi=x1x2x3... xi
Þ W=
N!g
n1
 
1
g
n2
 
2
g
n3
 
3
...
n1!n2!n3!...
where N=n1+n2+n3+...

Now we maximise entropy ( S=S(n1,n2,n3,... ) ) however n1 , n2 , n3 , ...are not independent.

so we need to solve
df+l df =0     (6.7)
S=klnW=kln
æ
ç
ç
è
N!
 
Õ
S
g
nS
 
S
nS!
ö
÷
÷
ø
S=k[lnN! +
 
å
S
nSlngS -
 
å
S
lnnS!]
S~ k[NlnN -N+
 
å
S
nSlngS -
 
å
S
(nSlnnS-nS)]

6.3   Equilibrium Values of **ns**

we maximise entropy
f=lnW +a (
 
å
S
nS-N)-b (
 
å
S
nSeS-U)
where a and b are Lagrange multipliers
df=d(lnW )+a
 
å
S
dnS-b
 
å
S
eSdnS
d(lnW )=
 
å
S
[lngSdnS-lnnSdnS]
this is because d/dx(xlnx-x)=lnx
df=
 
å
S
(-lnnS+lngS+a -beS)dnS
df=0ÞlnnS=lngS+a -beS
Þ nS=gSe
a -beS
 
    (6.8)
a and b are constants determined by
 
å
S
nS=N,  
 
å
S
nSeS=U
N=e
a
 
 
å
S
gSe
-beS
 
e
a
 
=
N
 
å
S
gSe
-beS
 
=
N
Z
we now define the partition function as
Z=
 
å
S
gSe
-beS
 
    (6.9)
Z=
 
å
states
e
-beS
 
    (6.10)

Note that
Z
b
=-
 
å
S
eSgSe
-beS
 
=-
Z
N
 
å
S
eSnS=-
Z
N
U
Þ U=-
N
Z
Z
b
=-N
(lnZ)
b

6.4   Recovery of Thermodynamics

We derive dU=TdS-PdV
U=
 
å
S
nSeS
dU=
 
å
S
dnSeS+
 
å
S
nSdeS     (6.11)
we recall that
eS=
c
L2
=cV
-
2
3
 
this is because V=L3
deS=c.-
2
3
.V
-
5
3
 
dV=-
2
3
eS
dV
V
 
å
S
nSdeS=-
2
3V
 
å
S
eSdV=-
2
3
U
V
dV=-PdV
this is if P=2/3U/V and only correct if U=3/2NkT .

The heat term, we recall
d(lnW )+a
 
å
S
dnS-b
 
å
S
eSdnS=0
this is the condition for maximum entropy (and hence the equilibrium condition for nS ). We have solved
 
å
S
nS=N
Þ
 
å
S
dnS=0
Þ d(klnW )=b k
 
å
S
eSdnS
 
å
S
eSdnS=
dS
b k
=TdS
if T=1/b k ie. b =1/kT hence we get the funcdemental equilibrium of b
b =
1
kT

6.4.1   Computing S

S=klnW
S~ k é
ê
ê
ë
NlnN -N+
 
å
S
nSln
æ
ç
ç
è
gS
nS
ö
÷
÷
ø
+
 
å
S
nS ù
ú
ú
û
this is from section 6.5
nS
gS
=
N
Z
e
-beS
 
so
S=k é
ê
ê
ë
NlnN +
 
å
S
nS æ
ç
ç
è
-ln
N
Z
+beS ö
÷
÷
ø
ù
ú
ú
û
S=k[nlnN-NlnN+NlnZ+b U]
S=NklnZ+b kU
S=NklnZ+
U
T
we recall that F=U-TS
U=NkTlnZ+U
Þ F=-NkTlnZ=-kTlnZN     (6.12)
F® P= æ
ç
ç
è
F
V
ö
÷
÷
ø
 



T
,  S=- æ
ç
ç
è
F
T
ö
÷
÷
ø
 



V
equation 6.14 is the Bridge Equation

6.5   Evaluation of Z

Z=
 
å
S
gSe
-beS
 
=
 
å
n2
g(n2)e
-be
 
or we could write
Z=
¥
å
nx=0
¥
å
ny=0
¥
å
nz=0
e
-be
 
where
e =
2p2
2mL2
(nx2+ny2+nz2)
so here degeneracy is automatically taken care of
Z= æ
ç
ç
è
¥
å
nx=0
C
-anx2
 
ö
÷
÷
ø
æ
ç
ç
è
¥
å
ny=0
C
-any2
 
ö
÷
÷
ø
æ
ç
ç
è
¥
å
nz=0
C
-anz2
 
ö
÷
÷
ø
where a=2p2/2mkTL2
Z= æ
ç
ç
è
¥
å
n=0
e
-an2
 
ö
÷
÷
ø
¥
å
n=0
e
-an2
 
~ó
õ
¥


-¥
dne
-an2
 
  (if a<<1)
which is true on macro scales
ó
õ
¥


0
dne
-an2
 
=
1
2
p
a
æ
ç
ç
ç
ç
è
ó
õ
¥


-¥
dne
-n2
 
=p ö
÷
÷
÷
÷
ø
Z= æ
ç
ç
è
p
4a
ö
÷
÷
ø
3
2



 
Z=L3T
3
2
 
æ
ç
ç
è
mk
2m2
ö
÷
÷
ø
Z=VT
3
2
 
æ
ç
ç
è
mk
2p2
ö
÷
÷
ø
3
2



 
    (6.13)
F=-NkTlnZ
F=-NkT æ
ç
ç
ç
ç
ç
ç
ç
ç
è
lnV+
3
2
lnT+ln
æ
ç
ç
è
mk
2p2
ö
÷
÷
ø
3
2



 
ö
÷
÷
÷
÷
÷
÷
÷
÷
ø
P=- æ
ç
ç
è
F
V
ö
÷
÷
ø
 



T
=
NkT
V
U=-N
b
(lnZ)
where b =1/kT
U=NkT2
(lnZ)
T
where b =- T/kT2
U=NkT2
T
æ
ç
ç
è
3
2
lnT+... ö
÷
÷
ø
U=
3
2
NkT
S=- æ
ç
ç
è
F
T
ö
÷
÷
ø
 



V
S=NklnV+Nkln
T
3
2
 
+
3
2
Nk+Nkln
æ
ç
ç
è
mk
2p2
ö
÷
÷
ø
3
2



 
    (6.14)
This is not extensive (or intensive) because of NklnV
NklnV=Nkln
V
N
+kNlnN-Nk+Nk=Nkln
V
N
+Nk+klnN!
lnN!~ NlnN-N
to make S extensive
S® S-klnN
since S=klnW we let W®W/N!  [=WMB]
Þ WMB=
 
Õ
S
g
nS
 
S
nS!
    (6.15)
this is the corrected or maxwell-boltzmann counting for W . Dropping N! means permutations don't change physical state (see section 7 for an explanation). We note that this correction is not for localized particles (eg. paramagnetic systems).

With N! correction
S=NklnZ+
U
T
-klnN=kln
æ
ç
ç
è
ZN
N!
ö
÷
÷
ø
+
U
T
Þ F=U-TS=-kTln
æ
ç
ç
è
ZN
N!
ö
÷
÷
ø
    (6.16)
P=-
F
V
=
NkT
V
  (as before)
S=Nkln
V
N
+
3
2
NklnT+
5
2
Nk+ln
æ
ç
ç
è
mk
2p2
ö
÷
÷
ø
3
2



 
    (6.17)
This is the Sackur-Tetrode equation and agrees with experiment
æ
ç
ç
è
¥
å
n=0
e
-an2
 
~ó
õ
dne
-an2
 
ö
÷
÷
ø
this is because a~1/T however is not valid as T® 0

6.6   The Royal Route From Micro to Macro

Given a system where U , V and N is fixed
  1. calculate the energy levels eS of each particle
  2. compute
    Z=
     
    å
    S
    gSe
    beS
     
    =
     
    å
    S
    e
    -beS
     
  3. from free energy
    F=-kTln
    æ
    ç
    ç
    è
    ZN
    N!
    ö
    ÷
    ÷
    ø
      (gases)
    F=-kTlnZN  (localized)
  4. S=- æ
    ç
    ç
    è
    F
    T
    ö
    ÷
    ÷
    ø
     



    V
    ,  P=- æ
    ç
    ç
    è
    F
    V
    ö
    ÷
    ÷
    ø
     



    T
    these are equations of state
  5. U=F+TS
    or
    U=-N
    b
    (lnZ)

6.7   Localized Harmonic Oscillators

We have N simple harmonic oscillations in a heat bath of temperature T . This is a crude model of a solid. We apply the Royal Route
  1. eS= æ
    ç
    ç
    è
    s+
    1
    2
    ö
    ÷
    ÷
    ø
    w
    where s=0,1,2,... ,¥
  2. Z=
    ¥
    å
    s=0
    e
    -beS
     
    b =
    1
    kT
    Z=e
    1
    2
    bw
     
    ¥
    å
    s=0
    e
    -bw
     
    Þ
    ¥
    å
    s=0
    xS
    where x=e-bw
    Þ 1+x+x2+x3=
    1
    1-x
    Z=
    e
    1
    2
    bw
     
    1-e
    -bw
     
        (6.18)
  3. F=-kTlnZN
    since it is localized
  4. S=-
    F
    T
    ,  P=-
    F
    V
      [=0]
  5. U=-N
    b
    (lnZ)=-N
    b
    æ
    ç
    ç
    è
    -
    1
    2
    bw -ln
    (1-e
    -bw
     
    )
    ö
    ÷
    ÷
    ø
    U=
    1
    2
    Nw +N
    1
    1-e
    -b kw
     
    w e
    -bw
     
U=
1
2
Nw +
Nw
e
bw
 
-1
  b =
1
kT
    (6.19)
T® 0,  b®¥ ,  second term® 0
U®
1
2
Nw
T®¥  (kT>>kw ),  b® 0     (6.20)
U®
Nw
1+bw -1
=
N
b
=NkT
U=N× f×
1
2
kT
f=2 because there are two degrees of freedom
E=
p2
2m
+
1
2
mw2x2
kinetic and potential energy gives one degree of freedom each, so the specific heat is
c=
U
T
=Nk
for one mole of substance
N=3NA
Þ c=3NAk=3R
this is known as the Dulong Petit Law

6.8   Diatomic Molecules


Figure 6.6 - Energy Stored in Diatomic Molecules
How do these three degrees of freedom combine?
e =et+er+ev
Z=å e
be
 
Z=
 
å
S1
 
å
S2
 
å
S3
e
-be
t
 
S1
 
e
-be
r
 
S2
 
e
-be
v
 
S3
 
Þ Z=ZtZrZv     (6.21)
F=-kTln
æ
ç
ç
è
ZN
Z1
ö
÷
÷
ø
F=-kTln
æ
ç
ç
è
ZtN
N!
ZrNZvN ö
÷
÷
ø
F=-kTln
æ
ç
ç
è
ZtN
N!
ö
÷
÷
ø
-kTlnZrN-kTlnZvN
F=Ft+Fr+Fv
therefore S , U and e all add for the translational, rotational and vibrational modes. eg
cV=CVt+CVr+CVv=
3
2
Nk+Nk+Nk=
7
2
Nk  (see Classwork 5)

Previous Contents Next