Previous Contents

Chapter 7   Quantum Statistical Mechanics

7.1   Validity of Classical Statistics

nS=gSe
a -beS
 
fS=
nS
gS
-e
a
 
e
-beS
 
<e
a
 
=
N
Z
e
a
 
=
N
Z
where
Z=V æ
ç
ç
è
mkT
2p2
ö
÷
÷
ø
3
2



 
Z=
V
l3
  (l=length)
l3~ æ
ç
ç
è
2
2mkT
ö
÷
÷
ø
E~ kT and E~
p2
2m
mkT~ (D p)2
2
mkT
~
2
(D p)2
~ (D x)2
where l is the themal de Broglie wavelength which is the uncertainity due to thermal and quantum effects.
e
a
 
=
N
V
l3=
l3
æ
ç
ç
è
V
N
ö
÷
÷
ø
e
a
 
~
quantum volume
volume per particle
    (7.1)
This has to be small for classical statistics to be valid, for example air has a value of 10-5 for ea . However classical statistics breaks down occasionally, such as He at 5K gives a value of 1/10 for ea . Another case is electrons in metals where we get ea<<1 .

7.2   Identical Particles


Figure 7.1 - Impossible to Distinguish between Different Particles
In quantum theory fundemental particles are indistinguishable.
Þ |Y (1,2)|2=|Y (2,1)|2
more generally
Y (1,2)=e
q
 
Y (2,1)=e
2q
 
Y (1,2)
Þ e
2q
 
=1;  e
q
 
=± 1
Y (1,2)=±Y (2,1)
so there are two possible outcomes of this
Y (1,2)=Y (2,1)     (7.2)
this (the class is called Bosons) obeys Bose-Einstein Statistics whilst
Y (1,2)=-Y (2,1)     (7.3)
obeys Fermi-Dirac Statistics (the class of particles here are called Fermions).

7.2.1   Spin - Statistics Theorem

Particles of 1/2 integer spin are fermons (electrons, protons, neutrons, He3 , ...). Particles of integer spin are bosons (photons, gravitons, W, Z, Higgs, He4 , ...). The He3/4 are made up of other combinations of spin (the proof is in the Atomic Physics's Module). Points to take note about

Figure 7.3 - Counting For Two Levels - What is W ?
For the first case in a classical view W=1 , for the Bose-Einstein case W=1 and for the Fermi-Dirac case W=0 . For the second case in a classical view W=2 , Bose-Einstein its W=1 and the Fermi-Dirac states W=1 .

7.3   Equilibrium Occupation Numbers

7.3.1   The Bose-Einstein Case

W=
 
Õ
S
(gS-1+nS)!
nS!(gS-1)!
we assume that gSnS>>1 and we maximise so that S=klnW is subjected to åSnS=N and åSnSeS=U . we now consider
f=lnW +a
 
å
S
nS-b
 
å
S
nSeS
we now set df=0 and we obtain the equilibrium values of nS
f=
 
å
S
[ (gSnS)ln(gS+nS)-gS-nS-nSlnnS+nS-ln(gS!) ] +a
 
å
S
nS-b
 
å
S
eSnS
now using lnN!~ NlnN-N
d
dx
(xlnx-x=lnx
df=
 
å
S
[ ln(gS+nS)-lnnS+a-b eS ] dnS
df=0 for all dnS
Þ ln
æ
ç
ç
è
gS+nS
nS
ö
÷
÷
ø
+a-beS=0
This is an equation for nS
gS+nS
nS
=e
-a +beS
 
-1
gS
nS
=e
-a +beS
 
-1
fS=
nS
gS
=
1
e
-a +beS
 
-1
    (7.4)

7.3.2   The Fermi-Dirac Case

fS=
nS
gS
=
1
e
-a +beS
 
+1
    (7.5)

7.3.3   The Classical Case (Limit)

nS<<gS Þ e
-a+beS
 
>>1
Þ
nS
gS
=
1
e
-a +beS
 
+1
~ e
a-beS
 

7.3.4   Interpretations of the Constants

Both a and b are determined by
 
å
S
nS=N;  
 
å
S
nSeS=U
however in general this is a difficult approach and also we don't introduce a partition function Z .

Instead we consider the condition for S=klnW to be maximised so that
d(lnW )+a
 
å
S
dnS-b
 
å
S
eSdnS=0
this means that
dS+ka dN-kb dU=0  (at fixed eS)
we now compare this to
dU=TdS-PdVdN
however PdV=0 as eS is a constant
Þ a =
µ
kT
;  b =
1
kT
we can now rewrite the following
fS=
nS
gS
=
1
e
eS
UT
 
± 1
    (7.6)
where there is a minus in the Bose-Einstein case and a plus in the Fermi-Dirac case.

7.4   Fermi-Dirac Gases

As nS approaches gS then the quantum effects start becoming important. The applications of this are
f(e )=
1
e
e
UT
 
+1
  as T® 0
so f(e )=0 if e >µ , f(e )=1/2 if e =µ and f(e )=1 if e <µ .

Figure 7.4 - Plotting the Three Different States of Positioning

Figure 7.5 - Fermion's Dropping into the Lowest States

f(e )=
1
e
-
e
UT
 
    (7.7)
e=e (U);  µ =µ (T,V)
The properties of f(e ) depend on µ as
f(e )=1  when  ef(e )=0  when  e >µ     (7.8)

Figure 7.6 - The Fermi-Dirac Ground State
As T® 0 , each particle drops into the lowest possible state, however the exclusion princliple prevents occupation with nS>gS , so each level fills to the maximum nS=gS , then the next energy level fills up to a maximum energy level e =µ . So µ is the energy of the highest occupied state and nS=0 for eS>µ . µ in this context is also called eF which is known as the Fermi Energy.


Figure 7.7 - The Bose-Einstein Ground State

7.4.1   The Calculation of mu (epsilon-F)

N=
 
å
S
nS=
 
å
S
gSfS
N~ó
õ
¥


0
de g(e )f(e )
Now refering back to equation 7.8 we can obtain
N~ó
õ
µ


0
de g(e )  as T® 0
where g(e ) is the degeneracy (from equation 6.25).
g(e )=Ce
1
2
 
C=
V
4p
æ
ç
ç
è
2m
2
ö
÷
÷
ø
3
2



 

In the case of electrons the value of g(e ) has a multiple of two added as an electron can also have two different states of spin.
N= ó
õ
µ


0
dee
1
2
 
× 2C=
2
3
µ
3
2
 
× 2C
N=
4
3
Cµ
3
2
 
This equation can be used to calculate µ in terms of N
µ
3
2
 
=
3N
4C
µ= æ
ç
ç
è
3N
4C
ö
÷
÷
ø
2
3



 
µ= æ
ç
ç
è
3p2N
V
ö
÷
÷
ø
2
3



 
2
2m
    (7.9)
We define the Fermi temperature by µ =kTF
TF=
2
2mk
æ
ç
ç
è
3p2N
V
ö
÷
÷
ø
2
3



 
    (7.10)
The Fermi-Dirac effects are important for when T<<TF . For example, electrons in a metal TF~ 70,000K . So Fermi-Dirac statistics are important at room temperature.
TF
T
~
2
mkT
æ
ç
ç
è
N
V
ö
÷
÷
ø
2
3



 
TF
T
~l2 æ
ç
ç
è
N
V
ö
÷
÷
ø
2
3



 
where l is the thermal de Broglie wavelength (looked at in section 7.1)
Þ
TF
T
~ æ
ç
ç
ç
ç
ç
è
l3
V
N
ö
÷
÷
÷
÷
÷
ø
2
3






 
=(e
a
 
)
2
3
 
note that for classical statistics to be valid TF/T<<1 , for example air has a value of about 10-5 for ea .

Internal Energy

U=
 
å
S
nSeS~ó
õ
de f(e )g(e )e = ó
õ
µ


0
de g(e )e =2C× ó
õ
µ


0
dee
3
2
 
and so we obtain
U=2C×
2
5
µ
3
2
 
=
4C
5
µ
3
2
 
we now recall that N=4/3Cµ3/2
Þ U=
3
5
µ N=
3
5
NkTF  (at T=0)     (7.11)
This is a huge energy at T=0 compared to an ideal gas. Also we can calulate the pressure
P=
2
3
U
V
  (geµ V
-
2
3
 
)
Þ PV=
2
3
U=
2
5
NkTF  (at T=0)
This again is also very large when compared to an ideal gas.


Figure 7.8 - The Exclusion Principle
fclass=e
-
e
kT
 
note that
ffermi dirac=
1
e
e
kT
 
+1

7.5   Bose-Einstein Condensation

fS=
nS
gS
=
1
e
e
kT
 
-1
The properties of fS depend on µ (T,V) as T® 0 by using åSnS£ N . As T® 0 we expect all the particles to drop into the lowest energy state s=0 , energy e0 and degeneracy g0=1 .
e=
2p2
2mL2
n2,  e0=0,  g0=1
 
å
S
nS=N
Þ n0® 0  as T® 0
Þ n1® 0
Þ n2® 0
n0=
g0
e
e
kT
 
-1
® N  as T® 0
Þ e
e
kT
 
-1®
1
N
e
e
kT
 
® 1+
1
N
  as T® 0
e0
kT
®ln
æ
ç
ç
è
1+
1
N
ö
÷
÷
ø
~
1
N
e0~
kT
N
µ~e0-
kT
N
  as T® 0     (7.12)

Figure 7.9 - Seperation of Energy Levels
Generally we have
|e0-µ |<<|e1-e0|
for example
e=
2p2
2mL2
n2
e0=0,  e1=
2p2
2mL2
If m=He4 , m~ 7× 10-27kg , ~ 10-34Js , we now let L=1cm so that
e~ 10-35J
µ~ -
kT
N
,  T~ 1K,  K~ 10-23JK-1,  N~ 1023
Þ µ~ -10-46J
|e0-µ |
|e1-e0|
~ 10-11
this is very small
n0=
1
e
e0
kT
 
-1
,  n1=
1
e
e1
kT
 
-1
where in the n0 equation µ is very small whilst in the n1 equation it is not very small, ie. the particles drop into n0 extremely rapidly as T® 0 .

If we compare this to the classical case
n0
n1
=
e
-
e0
kT
 
e
-
e1
kT
 
=e
e1
kT
 
e1
kT
~
10-35
1023
~ 10-12
Þ
n0
n1
~ 1  at T=1K

For Bose-Einstein Statistics
n0
n1
=
e
e1
kT
 
-1
e
e0
kT
 
-1
=
e
e1
kT
 
-e
µ
kT
 
1-e
µ
kT
 
  e0=0
n0
n1
=
1+
e1
kT
-1+
1
N
1-1+
1
N
and because e-µ/kT~ 1+1/N we obtain
n0
n1
~ N æ
ç
ç
è
e1
kT
+
1
N
ö
÷
÷
ø
~ N
e1
kT
Þ
n0
n1
~ 1023× 10-12~ 1011>>1  at T=1K

note that
Wclassical=N!
 
Õ
S
g
nS
 
S
nS!
~
N!
n0!n1!
~ 1
Wbose-einstein=
 
Õ
S
(gS+nS-1)!
(gS)!nS!
=0 (1)

7.6   Photons and Blackbody Radiation

We have seen that
P=
1
3
U
V
,  U=a VT4
we now consider radiation in a cavity where the energy level is related to the frequency ( e =hn , degeneracy g(e ) ), we compute U
U=
 
å
S
eSnS
nS=
gS
e
-a +beS
 
-1
to fix a we use åSnS=N however photons are not conserved in number. This implies that a is zero because this is the Lagrange multiplier for åSnS=N .
U=
 
å
S
gSeS
e
beS
 
-1
,  b=
1
kT
Þ U~ó
õ
¥


0
de
g
 
e
e
e
be
 
-1
what is g(e ) ?
U=
8p V
c3
ó
õ
dnn2
hn
e
hn
k
T
 
-1
U
V
=
8p h
c3
ó
õ
dn
n3
e
hn
k
T
 
-1
    (7.13)
and this becomes
U= ó
õ
dn UV
UV=
8p h
c3
n3
e
hn
k
T
 
-1
    (7.14)
this is known as Planck's Radiation Law

Figure 7.10 - Blackbody Radiation Plot
let x=hn/kT , n=kT/hx
U
V
=
8p h
c3
æ
ç
ç
è
k
h
ö
÷
÷
ø
4



 
T4 ó
õ
¥


0
dx
x3
ex-1
Þ
U
V
=a T4     (7.15)
where
a =
8
15
p5k4
c3h3
and
ó
õ
¥


0
dx
x3
ex-1
=
p4
15
this is known as Stefan-Boltzmann Radiation Law
Previous Contents