Previous Contents Next

Chapter 26   Lecture 25 - Examples of Perturbation Theory

26.1   Non-Degenerate Perturbation Theory

We recall from the last lecture that
En~ En0+D En(1)+D En(2)     (26.1)
Yn~ Un+l
 
å
k n
ck(1)Uk     (26.2)
We will now apply these results to study the behaviour of a distorted infinite square well.
V=¥ ,  x<0,  x>L Þ V'=Cx(x-L)  (0<x<L)     (26.3)

Figure 25.1 - A Distorted Infinite Square Well
H0 is the potential of the infinite square well
V'=Cx(x-L)  (where lº C)     (26.4)
we now assume that l (C) is sufficiently small and now we obtain
En0=
h2
8mL2
n2 Un=
2
L
sin
æ
ç
ç
è
np x
L
ö
÷
÷
ø
    (26.5)
The first order energy shift is
D En(1)=l ó
õ
¥


-¥
Un*(x)VUn(x)dx
D En(1)=C ó
õ
¥


-¥
Un*(x)x(x-L)Un(x)dx
Þ D En(1)=-CL2 æ
ç
ç
è
1
6
+
1
2n2p2
ö
÷
÷
ø
    (26.6)
En=
h2n2
8mL2
-CL2 æ
ç
ç
è
1
6
+
1
2n2p2
ö
÷
÷
ø
    (26.7)
If C is negative then the energy increase however if it is positive then the energy decreases.

The changes to the wavefunction mean that we must evalute Ck(1)
ck(1)=l
ó
õ
 


all space
Uk*VUndV
En0-Ek0
Þ ck(1)=C
ó
õ
L


0
Uk*(x)x(x-L)Un(x)dx
En0-Ek0
    (26.8)
note that if k+n is odd then this integral vanishes as ck(1)=0 however if k+n is even the the integral is finite and becomes
ck(1)=-
CmL4
h2p2
64kn
(k2-n2)3
    (26.9)
If n=1 in this case (eg. the ground state) the contribution to ck(1) is only from when k is odd.

26.1.1   Example - Nuclear Square Well


Figure 25.2 - The Nuclear Square Well
The outcomes of this model are

26.2   Degenerate Perturbation Theory - A Hydrogen Atom in an Electric Field


Figure 25.3 - A Hydrogen Atom in an Electric Field
The energy states are characterised by the priniciple quantum number n , where each value of n has l=n-1,n-2,... ,0 . In a Hydrogen atom the n=2 state has properties
n=2 state Four Fold Degeneracy
l=0 1
m=0 1,0,-1
we write Un,l,m , so for n=2 we have U2,0,0 , U2,1,1 , U2,1,0 and U2,0,-1 all with the same energy E20 .

The electric field F is now applied along the z direction.

Now the interaction along the Hamiltonian Vinternal=ezF and so
H=H0+ezF     (26.10)
we obtain that V'=ezF so the new eigenstates of the problem are
f1=U2,1,0+U2,0,0 f2=U2,1,0-U2,0,0 f3=U2,1,1 f4=U2,1,-1     (26.11)
we recall from the handout that
D E
(1)
 
a
= ó
õ
 


all space
f
*
 
a
V 'f
 
a
dV
D E3(1)=D E4(1)=0     (26.12)
D E1,2= ó
õ
¥


0
ó
õ
2p


0
ó
õ
p


0
f1,2*(r)ezFf1,2(r)r2sinqdrdq df
D E1,2=± 3eFa0     (26.13)
this is known as the Stark effect.
Previous Contents Next