Previous Contents Next

Chapter 24   Lecture 23 - Temporal Evolution in a Two Level System

24.1   Transitions Between Eigenstates

We consider
H(t)=H0+V(t)     (24.1)
where V(t) changes rapidly, so the time scale for this operator is
t
E
The outcomes of this are

24.2   Two Level Systems

The resonance condition is
w0=E2-E1     (24.5)
In practice many systems simplify to two levels. eg. the spin of a half by particles in a magnetic field, or atoms in resonant laser fields.

For a two level system equation V.14 reduces to
Y (r,t)=c1(t)U1(r )e
-
E1
 
t
 
+c2(t)U2(r )e
-
E2
 
t
 
    (24.6)
The time development is given by the Schrödinger equation
t
Y (r,t)=(H0+V(t))Y (r,t)
This gives
é
ê
ê
ë
E1c1(t)+
t
c1(t) ù
ú
ú
û
U1(r )e
-
E1
 
t
 
+ é
ê
ê
ë
E2c2(t)+
t
c2(t) ù
ú
ú
û
U2(r )e
-
E2
 
t
 
=c1(t) [ E1+V(t) ] U1(r )e
-
E1
 
t
 
+c2(t) [ E2+V(t) ] U2(r )e
-
E2
 
t
 
    (24.7)
We recall the orthonormality condition
ó
õ
 


all space
Um*UndV=dmn
ó
õ
 


all space
Un*dV     (24.8)
this can be used to sieve out the terms of Un that are m¹ n where
Un*=Un*(r )e
+
En
 
t
 
    (24.9)
We now operate on equation V.18 with òall spaceU1*dV and òall spaceU2*dV and obtain
d
dt
c1(t)=c1(t) ó
õ
 


all space
U1*V (t)U1dV+c2(t) ó
õ
 


all space
U1*V(t)U2dV
d
dt
c2(t)=c2(t) ó
õ
 


all space
U2*V (t)U2dV+c1(t) ó
õ
 


all space
U2*V(t)U1dV     (24.10)
An object like
ó
õ
 


all space
Un*VUmdV     (24.11)
is called a matrix element. Dirac invented a succinct notation for this.
<n|V|m>     (24.12)
Equation V.21 is a master equation that discribes the evolution of c1(t) and c2(t)

24.3   Resonant Interaction

To solve equation V.21 we will assume the following the solutions become
c1(t)=cos
æ
ç
ç
è
<2|U|1>
 
t ö
÷
÷
ø
c2(t)=-sin
æ
ç
ç
è
<1|U|2>
 
t ö
÷
÷
ø
    (24.16)
therefore the amplitudes are the probabilities which are proportional to
cos2
é
ê
ê
ë
<2|U|1>
 
t ù
ú
ú
û
    (24.17)

Figure 23.1 - The Nutation or Rabi Plopping
If the interaction is weak ( P2<<1 ) and we have a frequency spread in Dw for V(t) we obtain a slightly different form of the solution
P(2)=
p
2
g(E)|<2|U|1>|2t     (24.18)
this is known as the Fermi-Golden rule.


Previous Contents Next