Previous Contents Next

Chapter 20   Lecture 19 - Eigenfunctions of Angular Momentum

20.1   Angular Momentum Eigenvalue Equation

We saw that
[L2,Lz]=[L2,Lx]=[L2,Ly]=0
thus eigenfunctions of L2 cam be simultaneous eigenfunctions of Lz or Lx or Ly . By choosing L2 and Lz (because the latter is especially convenient in spherical polars) we write
L2Y (r,q ,f )=a2Y (r,q ,f )     (20.1)
LzY (r,q ,f )=bY (r,q ,f )     (20.2)
The operators L2 and Lz are
Lz=-
q
L2=- é
ê
ê
ë
2
q2
+cotq
q
+
1
sin2q
2
f2
ù
ú
ú
û
so these depend only on q and f since there is no r dependence we can write
Y (r,q ,f )=c (q )U(f )R(r)     (20.3)

20.2   hat(L)z Eigenstates and Eigenvalues

From equations IV.25 and IV.26 we obtain
-
f
Y (f )=b U(f )     (20.4)
the solution is
U(f )=Ce
b
 
f
 
    (20.5)
æ
ç
ç
ç
ç
è
ó
õ
2p


0
|U(f )|2df =1Þ C=
1
2p
ö
÷
÷
÷
÷
ø
Since the wavefunction U(f ) must be single valued we can deduce the boundary conditions.
U(f )=U(f +2p )     (20.6)
Þ e
b
 
2p
 
=1
This is satisified if
b =m     (20.7)
this implies angular momentum is quantised where m is an integer. Therefore we obtain
U(f )=c (q )e
mf
 
    (20.8)
so in inserting this into equation IV.24 yields
-2 é
ê
ê
ë
2
q2
+cotq
q
+
1
sin2q
2
q2
ù
ú
ú
û
c (f )e
mf
 
=a2c (f )e
mf
 
    (20.9)
so after performing the operation in f and rearranging
é
ê
ê
ë
d2
dq2
+cotq
d
dq
-
m2
sin2q
+
a2
2
ù
ú
ú
û
c (q )=0     (20.10)
this is solved via the substitution x=cosq
é
ê
ê
ë
(1-x2)
d2
dx2
-2x
d
dx
-
m2
1-x2
+
a2
2
ù
ú
ú
û
c (x)=0     (20.11)
This differential equation has a well known set of standard solutions but solutions only exist for discrete values of a2
a2=l(l+1)2     (20.14)
where
l=0,1,2,...  (integer)     (20.15)
and is called the angular momentum quantum number for each l the permitted m values are
m=l,l-1,0,... ,-(l-1),-l     (20.16)
note that
mmax =l <a -l(l+1)
This is essential to satisify uncertainity relations D LzD Lx

Figure 19.1 - A Heuristic Model
this shows that

20.3   Spherical Harmonics

The complete normalised angular momentum eigenfunctions are labelled Ylm(q ,f ) called spherical harmonics.
Ylm(q ,f )=(-1)m é
ê
ê
ë
(2l+1)(l-|m|)!
4p (l+|m|)!
ù
ú
ú
û
1
2



 
× Pl|m|(cosq )e
mf
 
    (20.17)
the outcomes of this are:
Previous Contents Next