
| <x | >= | ó õ |
|
Yn*(x)xYn(x)dx=0 (harmonic oscillator) (17.1) |
| px=- |
|
(A-A | ) (17.4) |
| x= |
|
(A+A | ) (17.5) |
| px2=- |
|
mw |
æ è |
(A)2-AA | -A | A+(A | )2 |
ö ø |
(17.6) |
| x2= |
|
æ è |
(A)2+AA | +A | A+(A | )2 |
ö ø |
(17.7) |
| <x | 2>= | ó õ |
|
Yn*(x)x2Yn(x)dx= |
|
æ ç ç è |
n+ |
|
ö ÷ ÷ ø |
(17.8) |
| <p | x2>= | ó õ |
|
Yn*(x)px2Yn(x)dx= mw |
æ ç ç è |
n+ |
|
ö ÷ ÷ ø |
(17.9) |
| <kinetic energy>= |
|
= |
|
| <potential energy>= |
|
mw2<x2>= |
|
| total energy=<ke>+<pe>= |
|
(zero point) (17.10) |
| D x=<x2>-<x>2= |
|
|
| D px=<px2>-<px>2= mw |
|
| D xD px= |
æ ç ç è |
n+ |
|
ö ÷ ÷ ø |
|
(17.11) |
| Y (x)= |
|
cnY (x) |
| <E | >= |
|
|cn|2En |
| Y (x)= |
|
Y0(x)+ |
|
Y1(x)+ |
|
Y3(x) |
| <E>= |
|
× |
|
+ |
|
× |
|
w + |
|
× |
|
w = |
|
w |
| Y (x,t)= |
|
cnYn(x)e |
|
| <E | >= |
|
|cn|2En=constant |
| Y (x)= |
|
(Y0(x)+Y1(x)) |
| <x | >= | ó õ |
|
xY*(x)Y (x)dx |
| <x | >µ | ó õ |
|
[ | xY0*Y0+Y0*xY1+Y1*xY0+Y1*xY1 | ] | dx |