Previous Contents Next

Chapter 7   Lecture 7 - Energy Eigenstates and Eigenvalues

7.1   Time Dependence

We saw that (from equations II.25 and II.26)
E=
t
px=i
x
are plasusible operators for energy and momentum. Assuming these are generally true we can write down an energy eigenvalue equation.
EY (x,y,z,t)=EY (x,y,z,t)
t
Y (x,y,z,t)=EY (x,y,z,t)     (7.1)
From equation II.27 we know that E~/ t acts on the time dependent part of the wavefunction. The spacial part of the energy eigenfunction will be independent of t and therefore we can seperate out time dependent parts of Y (x,y,z,t)
Y (x,y,z,t)=U(x,y,z)T(t)     (7.2)
where U(x,y,z) is spatial whilst T(t) is temporal. eg. for plane waves
e
(kx-w t)
 
=e
kx
 
e
-w t
 
from equation II.28 we have
t
(U(x,y,z)T(t))=U(x,y,z)
t
T(t)=EU(x,y,z)T(t)
dividing both sides by U(x,y,z)
t
T(t)     (7.3)
the general solutions are of the form
T(t)=Ae
-
E
 
t
 
    (7.4)
The energy of an energy eignestate determines the temporal evolution.

7.2   An Energy Operator in Spatial Coordinates

In classical physics
E=Ekinetic energy+V(x,y,z)     (7.5)
where V(x,y,z) is a potential function
Ekinetic energy=
1
2
mv2=
p2
2m
    (7.6)
we invoke the Correspondence Principle. ie. equivalence of classical and quantum physics under appropiate limits. so converting from classical to quantum physical terms
p®p
Ekinetic energy®
p2
2m
V(x,y,z)®V(x,y,z)     (7.7)
so p in three dimensions
x
® Ñ
where
Ñ=i
x
+j
y
+k
z
therefore
p=Ñ     (7.8)
Þ
(p)2
2m
=
(-Ñ)2
2m
=-
2
2m
Ñ2     (7.9)
where
Ñ2=
2
x
+
2
y
+
2
z
  (in Cartesian form)     (7.10)
Thus we have an operator for energy called the Hamiltonian Operator
H=-
2
2m
Ñ2+V(x,y,z)     (7.11)
HY (x,y,z,t)=EY (x,y,z,t)=
t
Y (x,y,z,t)
t
Y (x,y,z,t)= é
ê
ê
ë
-
2
2m
Ñ2+V ù
ú
ú
û
Y (x,y,z,t)     (7.12)
Equation II.38 is the Time-Dependent Schrödinger equation. The solutions of this equation are wavefunctions of the states of definite energies (the energy eigenstates). The outcomes of this equation are H acts only on the spatial part of the wavefunction
Y (x,y,z,t)=U(x,y,z)T(t)=U(x,y,z)e
-
E
 
t
 
H Y (x,y,z,t)=e
-
E
 
t
 
H U(x,y,z)=e
-
E
 
t
 
EU(x,y,z)     (7.13)
Thus for an energy eigenvalue En we have for the eigenstate Un the following Time Independent Schrödinger Equation
é
ê
ê
ë
-
2
2m
Ñ2+V(x,y,z) ù
ú
ú
û
Un(x,y,z)=EnUn(x,y,z)     (7.14)

Previous Contents Next